
Final Report
Version 1.0

28 April 2021

Team DigiFolio

Dr. Andy Wang

Fabio Santos

Burbank, Logan(lead)

Braudaway, Jackson

Chen, Kailin

Marschel, Parker

Yang, Zhenyu

Table of Contents

1. Introduction 2

2. Process Overview 3

3. Requirements 4

4. Architecture and Implementation 9

5. Testing 18

6. Project Timeline 26

7. Future Work 27

8. Conclusion 28

Appendix A 29

1

1. Introduction

Landing a job right out of college can have a determining factor to whether or not

someone has had industry or internship experience prior to graduation. This leaves

students who do not have prior experience to search for a job after they have graduated

or even forcing these graduates to look into other fields not related to their degree for

work. This is not only a problem for students attending Northern Arizona University; it

is also an underlying problem for millions of other graduates looking for work.

Currently, at Northern Arizona University, students' success is tracked through exit

surveys before each student graduates. While this is semi effective in getting students to

provide feedback before they graduate, this information is obtained too late in a

students academic career to be effective in helping students find a job. Even with

programs such as job fairs or Handshake in place, they are all optional for students to

participate in. Our solution aims to change this and actually promote student success by

tracking a student’s progression at the beginning of their college career rather than at

the end through the use of a web application that will display their career milestones

and progress highlights. Through this, both faculty and students will be able to see how

the student is doing at any point in their college career and be able to assist them in

reaching their set goals.

Our sponsor for this project is Dr. Andy Wang, progressor and dean of the College of

Engineering, Informatics, and Applied Science here at Northern Arizona University.

With Dr. Wang being the dean of the college, he looks over thousands of students. He

understands how well the college and its students are performing is not easy to do with

only exit surveys. Our solution will be able to paint an accurate representation of this so

that Dr. Wang can work to help students achieve goals and be more successful by the

time graduation comes. Overall, with this tool, students will be able to track their

progress towards their career goals.

2

2. Process Overview

Throughout the course of this project our team worked alongside our mentor Fabio

Santos and our client Dr. Wang to understand the problems and needs of the current

system in which student career success is tracked and measured. By doing this we

gained a better understanding of how our solution should accommodate this problem

and assisted us in every step of the software development life cycle from planning to

design to implementation and then full deployment of our solution. As our application

was under development we tried and tested a few different technologies along the way

including fusion charts for our statistical graphing module, node.js for our application

framework, mySQL for our backend database, and the NAU ITS server to host the

application after its completed development. Now, prior to completing the application

our group members took on individual roles and responsibilities while putting forth

different procedures to organize the code base and discuss the project as a group. While

we did meet with our mentor weekly and our client fairly often as needed, we also came

together as a group every Friday outside of these meetings on Discord to go over

upcoming tasks and responsibilities. Here we were able to share files and make

decisions in regards to how and what to include with our solution as well as who would

do what for different upcoming tasks in order to break those tasks into smaller pieces

that could all fit together in the end like a puzzle. Additionally, meeting with each other

allowed us to bounce ideas off one another and made sure we all had the same level of

understanding for upcoming goals and tasks. In the end, communicating with our

mentor, client, and each other provided us with ideas on how and what to include in our

solution to meet our clients needs all the way through the planning, analysis, design,

implementation, integration, and finally the deployment of our application.

3

3. Requirements

Our functional and non-function requirements were acquired through our

communication with our client Dr. Wang. At the introduction of this project we gathered

our initial requirements, which over the course of the development life cycle gradually

changed. This change included the addition of more requirements and modification of

others, which also correlated directly with our growing understanding of what our client

was looking for in our application. As a result of this, our main functional and

non-functional requirements emerged as the following:

Domain Requirement 1: User System

Our first domain level requirement involves implementing a user system that will allow

for user accounts with role-based permissions. There will be three account types, with

these types being Student, Faculty, and Alumni. Each of these types will have specific

basic functional requirements. With that, each account type will have functional

requirements:

FR1.1: A student can create a student account with student permissions.

1.1.1: A student can log in and log out.

1.1.2: A student can view and modify their own portfolio page.

1.1.3: A student can decide what is visible on their page.

1.1.4: A student can view public information on other student pages.

1.1.5: A student can view the overall progress dashboard.

FR1.2: A faculty member can create a faculty account with faculty permissions.

1.2.1: A faculty member can log in and log out.

1.2.2: A faculty member can view and modify any student portfolio page.

1.2.3: A faculty member can view the overall progress dashboard for

individual students, as well as a summative progress dashboard for a

program, department, and college.

1.2.4: A faculty member can change a student account into an alumni

account.

The second functional requirement is broken down into four smaller functionalities, and

it is also a simple requirement. This is just like the first one, with the exception that it is

for the permissions of a faculty member. The biggest difference here is that the faculty

member is able to modify any student page, but is not able to select what pieces are

public. Also, the dashboard will show faculty individual student progress toward her/his

goals, as well as a summative progress for a program, a department, and a college.

Finally, the faculty will also be able to modify a student account’s status, allowing

student accounts to become alumni accounts through a faculty member.

4

FR1.3: A student account will become an alumni account when the student has

graduated.

1.3.1: An alumni can log in and log out.

1.3.2: An alumni can view their own portfolio page.

1.3.3: An alumni can decide what is visible (public) on their page.

1.3.4: An alumni can request to have their portfolio page updated.

The third functional requirement is broken down into four smaller functionalities, with

this user type having the least functionality. Ultimately, this account is similar to a

student account, with the ability to request page updates rather than being able to

directly modify the page. This is so the information being added can be verified by an

administrator.

Domain Requirement 2: Digital Portfolio

Our second domain level requirement involves implementing a digital portfolio page

that will be built for each student account created. This page will be linked to a student

account, and it will include information about their name, contact information, and

career milestones.

FR2.1: The portfolio can be modified by the user.

2.1.1: A user can add a career milestone to the page.

2.1.2: A user can remove a career milestone from the page.

2.1.3: A user can report a data problem to a system administrator.

The first functional requirement for the digital portfolio can be broken down into three

smaller requirements. These requirements are focused on the milestones with the user

portfolio which will be updated by that user over time.

FR2.2: The portfolio will display student career information.

2.2.1: The student name will be displayed.

2.2.2: The student career milestones will be displayed.

The second functional requirement for the digital portfolio is broken down into two

smaller functionalities. The page will need to be able to build using the user information

when they choose to request their page. This will involve displaying the student name,

as well as the milestones connected to the student.

5

Domain Requirement 3: Goal Dashboard

Our third domain level requirement involves implementing a digital dashboard capable

of displaying the current progress of the student population in achieving

university-specified goals.

FR3.1: The dashboard must calculate the percentage of students with an

internship (including externship, Co-op, research project with experiential

learning outcomes) for a unit (program, department, or college).

The first functional requirement focused on the dashboard is simple enough to not need

any further breaking down. Ultimately, this will be a function that is done

semi-automatically, with the dashboard module needing to be able to calculate how

many students have earned an internship, externship, co-op, or research/experiential

learning opportunities. As this will be displayed in multiple possible ways, the

dashboard will achieve this by keeping a total count of students and consistently

updating the number who have had this internship. From this, a graphing module with

this calculated percentage will be displayed for a visual representation.

FR3.2: The dashboard must calculate the percentage of students with a job offer

for a unit (program, department, or college)

The second functional requirement focused on the dashboard is also not needing to be

broken down further. This will be extremely similar to the previous challenge, with the

only difference here involving what goal is being checked. In this case, the module will

already be storing the total number of student accounts, and it will now store the

number of students who have received a job offer. Then, it works like the previous

requirement in how it will check and calculate the results.

FR3.3: The dashboard must display each percentage in multiple chart forms

3.3.1: The percentage can be displayed as a pie chart.

3.3.2: The percentage can be displayed as a progress bar.

The third functional requirement focused on the dashboard is the only one needing to be

broken down further, mainly to lay out the different formats that will be possible on the

dashboard. We have decided to display these percentages in different graphical forms

such as a bar graph, pie chart, pyramid graph, etc.The user will have the option to swap

between these three different charts with a simple menu of choices.

6

Domain Requirement 4: Pulling from LinkedIn

Our fourth and last domain level requirement involves implementing a module capable

of reading data from LinkedIn and analyzing what data fits into which category. This

data will then be used to populate the student portfolio pages. This module must be able

to pull information from LinkedIn, analyze and classify the data, and store the data in its

correct place.

FR4.1: The LinkedIn module can pull data from LinkedIn servers

4.1.1: A request can be sent to the LinkedIn servers using its API

4.1.2: The resulting package is checked to verify it is what was requested.

4.1.3: The package can be unpacked into temporary memory.

The first functional requirement focused on the LinkedIn module is broken up into

three separate functionalities, with each being necessary to achieve the greater

requirement of pulling data from LinkedIn. In order to do so, the module must be able

to send a request to the LinkedIn server, verify the result that is sent, and unpack the

result into temporary memory. These stored results will then be used for the other

functional requirement, and this step will typically be done automatically, with the

choice to scan for new data manually.

FR4.2: The LinkedIn module can classify the data into categories.

4.2.1: Data can be classified as an identifying piece (ie. email)

4.2.2: Data can be classified as a career milestone

The second functional requirement focused on the LinkedIn module is broken up into

just two smaller functionalities, with the main purpose being to classify the information

pulled from LinkedIn into categories. These categories as we see it will include two

important ones to take note of, with the first being any identifying information

(LinkedIn API uses email), and the second being a career milestone. LinkedIn will likely

not make it obvious what each career milestone we are pulling entails, so this module

will check and place the data in the right spot once it is pulled.

Domain Requirement 5 (Stretch Goal): Job Posting Page

One domain level requirement not mentioned above is the Job Posting Page. This is

because it is our main stretch goal, but unfortunately we were not able to allocate

enough time to work on this after finally getting all of the functional requirements

implemented. Although, the job posting page is not urgent to the functionality of the

rest.

7

This page will be made to display job postings that are on Handshake, and this will be

done using a tool created for the exact purpose. This mainly leads to only one functional

requirement, and that is displaying data.

FR5.1: The Job posting page can automatically display a list of job postings from

Handshake, allowing links to quick access to the Handshake posting from their

site.

This single functional requirement is all that will be required of the job posting page. It

will be made as a gateway of sorts to specific pages on the Handshake servers. This will

allow students to have a viewable list of job postings that they can easily access and

apply for through the given route on Handshake.

Overall, these are the resulting requirements that have been obtained over the course of

the development life cycle of our project that lead us to our solution. In the end, each of

these pieces were brought together to form our web-based application.

8

4. Architecture and Implementation

Figure 4.0.

Our architecture consists of several key major parts. As can be seen in Figure 4.0, we

have the backend, the frontend, and the application as a whole. The frontend will consist

of three main parts, the dashboard, the user interface, and the user profiles. The

backend will also consist of three main parts with an added database to hold all the data

of the application itself. The three main parts of the backend are the Statistical

Graphing, the Database Handler, and the LinkedIn Data Handler. Overall, the entire

application holds all of these components to create the application as a whole.

The front-end components are the objects that users interact with. The most important

component that the user interacts with is the entire user interface itself, it will allow

users to register with the site, create a profile based on their academic achievements,

and navigate throughout the site to look at the overall success of every student. And next

is the user profile. The user profile will allow users to create their own profile based on

all their academic milestones, and retain their profile as a resume profile through NAU.

Finally, there is a dashboard on the frontend, where all the student’s milestones and

accomplishments will be displayed in graphical form to see the overall accomplishments

of the students.

9

The components that the backend consists of are where the developers connect all the

components together into one big application that the users get to experience. First,

there is the LinkedIn data handler which will scrape data from a LinkedIn account and

move all the information into the database. Second, there is the statistical graphing

component where it will take all the data and calculate specific goals and display them in

a graph on the website. Lastly, there is the database handler and the database itself

where all the information will be stored and organized to be accessible by any requests

made from the website.

The overall architecture design will be a web two-tier. Web two-tier has only two tiers:

the client application and the database. The client application, where the client can send

requests to the server-side without a middleman having to interfere with any of the

requests. The server side then handles the database where it can store information

without having to have a third action to keep all the information. Our users will simply

be able to create their profile which will go straight to our database and then the request

will be sent back with their profile and any information they may have entered into the

database from the frontend. Designing our architecture as a web two-tier makes it

simple and easy to maintain.

4.1 Key Responsibilities and Features

4.1.1 User Profiles

User profiles have many requirements which involve implementing a user system that

will allow for user accounts with role-based permissions. There will be three account

types: Student, Faculty, and Alumni. Each of these types will have specific basic

functional requirements. A student’s use in this application will involve logging in and

out, viewing portfolio pages, modifying their own page contents and visibility, and

seeing the overall progress. The faculty account is just like the student account, with the

exception that it is for the permission of a faculty member. The biggest difference here is

that the faculty member is able to modify any student page, but is not able to select what

pieces are public. Also, the dashboard will show faculty individual student progress

toward her/his goals, as well as summative progress for a program, a department, and a

college. Finally, the faculty will also be able to modify a student account’s status,

allowing student accounts to become alumni accounts through a faculty member.

Ultimately, an alumni account is similar to a student account, with the ability to request

page updates rather than being able to directly modify the page. This is so the

information being added can be verified by an administrator. The profiles will talk back

and forth between the database and the user’s profiles to make sure data is up to date.

10

4.1.2 User Interface

The user interface is a combination of all the features including the dashboard, the user

profiles, and the website itself. In this user interface a user is allowed to register and

create a profile. This profile will then be able to have its own personal profile page which

has many features that are included in the profile section. If a user is already registered,

then they are able to simply log in. The user interface also includes the dashboard where

overall goals will be displayed.

4.1.3 Dashboard

The dashboard part consists of a digital dashboard capable of displaying the current

progress of the student population in achieving university-specified goals. For now,

there are two different goals this dashboard will be capable of tracking: the total

percentage of students with an internship (including externship, Co-op, research project

with experiential learning outcomes), and the total percentage of students with a job

offer. This dashboard will get its data from the database in the backend. It will then

calculate anything based on the goals that are implemented on the website.

4.1.4 LinkedIn Data Handler

The LinkedIn data Handler will scrape data from a LinkedIn account, which will be used

to populate the student portfolio pages. This module must be able to pull information

from LinkedIn, analyze and classify the data, and store the data in its correct place. The

main purpose of the scraping is to classify the information pulled from LinkedIn into

categories. These categories as we see it will include two important ones to take note of,

with the first being any identifying information, and the second being a career

milestone. LinkedIn will likely not make it obvious what each career milestone we are

pulling entails, so this module will check and place the data in the right spot once it is

pulled. This LinkedIn scraping will be used from an HTML scraping tool to get the raw

HTML from a user’s connected LinkedIn profile which will then be placed inside the

database that holds all information in an organized manner.

4.1.5 Statistical Graphing

The statistical graphing will be a function that is done semi-automatically, with the

dashboard module needing to be able to calculate how many students have earned an

internship, externship, co-op, or research/experiential learning opportunities. As this

will be displayed in multiple possible ways, the dashboard will achieve this by keeping a

total count of students and consistently updating the number who have had this

internship. This way, the two values it needs are always available to display the results

as a fraction or as a percentage. Also, the internship will be checked using a flag attached

to the student, to allow for quicker calculation when running through all of the students.

11

The module will already be storing the total number of student accounts, and it will now

store the number of students who have received a job offer. Then, it works like the

previous requirement in how it will check and calculate the results.

4.1.6 Database Handler & Database

The database is where all information will be stored. The database will then

communicate with its database handler who then distributes all the information to the

designated areas such as the user profiles and the dashboard. The database is the most

important part of the website because, without the database, there would be nothing to

display about anything or anyone.

4.2 Module and Interface

In this section, we will go over the multiple modules and interfaces we will be using in

order to implement our software product. These modules are the primary pieces to

make the program work, and we will break each one down into the different parts and

methods each module will need.

4.2.1 LinkedIn Data Scraping Module

Figure 4.2.1

The LinkedIn module must be able to pull information from LinkedIn, analyze and

classify the data, and store the data in its correct place. Therefore, the LinkedIn module

has two main functional requirements:

● Pulling data from LinkedIn servers

● Classifying the data into categories

For the first requirement, once the users ask for data from their own interface, a request

will be sent to the LinkedIn server using its API. Then it will verify the result that is sent,

and unpack the result into temporary memory. These stored results will then be used for

12

the other functional requirement, and this step will typically be done automatically, with

the choice to scan for new data manually.

After classifying the data, which has been stored at the last step, into categories, these

categories as we see it will include two important ones to take note of, with the first

being any identifying information (LinkedIn API uses email), and the second being a

career milestone. LinkedIn will likely not make it obvious what each career milestone we

are pulling entails, so this module will check and place the data in the right spot once it

is pulled.

The result that was pulled from LinkedIn successfully is the most important step of the

whole module. We are trying to pull data from LinkedIn using different ways to make

sure the success rate. Although we have a rough prototype, changes will be made within

our modules to ensure that further development will be modular and reusable.

4.2.2 Statistical Graphing Module

Figure 4.2.2

The statistical graphing module will be able to take in the data which is pulled from

LinkedIn, analyze it, and then generate statistical graphs based on the milestones of the

userbase. In order to achieve this purpose, this module will have two responsibilities:

● Taking in data that pulled from LinkedIn

● Generating statistical charts

The first responsibility will interact with the LinkedIn module. First, the LinkedIn

module will pass some data it pulled, and the statistical graphing module will check if

the data is valid. Then it will analyze it, and store the data in a temporary data structure

for the convenience of calling and reading the information back.

13

After gathering and storing the data, the second responsibility will check which kind of

charts that user wants to have, then call the corresponding charts’ function, the charts

will show the statistical information clearly, and make it easy to understand. After

generating the charts, this module will interact with the user interface, and the charts

will be shown in the Dashboard bar.

The TakeInLinkedInData entity has three variables: Success, Milestone, and group, and

one function LoadUserData(). The function will get data from the LinkedIn module and

pass them into two variables.

The GenerateCharts entity consists three variables: TemporarySuccessData,

TemporaryMilestoneData, and TemporaryGroupData, and four functions

GenerateColumnChart(), GeneratePieChart(), GenerateLinearChart(), and

GeneratePyramidChart(). The data stored in two temporary variables is passed by the

TakeInLinkedInData entity, and four functions will create corresponding statistical

charts using the data in temporary variables.

4.2.3 User Interface

Figure 4.2.3

The user interface will be able to provide the user with all of the necessary operations

they will need to do on the application from traversing through different public profiles

14

to editing their own profiles, etc. With three different privileges on the application, the

user interface will differ slightly for different users. However, it will remain the same for

certain pages such as the home screen, which will prompt the user with a login or sign

up option that will also be the same no matter who is logging in or signing up (i.e.

students, faculty, alumni). As stated prior, once logged into the system this interface will

provide different features depending on the user.

Student users, once logged in, will have a home screen (dashboard displayed) which will

contain a navigation bar. The bar should have options such as “Dashboard” to return the

user back to the home page, “Portfolio” that will take them to their own profile page, and

a search bar to look up other students' public profiles. The portfolio page will allow a

student to logout, modify their portfolio, set public visibility preferences to different

features of their portfolio, and add/modify their goals. The dashboard will allow the

student to view their own goals and progression toward them as well as being able to

report an issue to administrators.

Alumni privileges will have the same options across the navigation bar as student users.

However, upon entering into their own portfolio they will not have any goals to add or

modify, rather they will be able to logout, set public visibility preferences to aspects of

their profile, and request to have their portfolio updated. Going back to the dashboard,

alumni will be able to search students and other alumni profiles as well as report a data

problem to administrators.

Faculty will be the most different as these users will have the highest level of privileges

on the system. Upon login, a faculty user will also have the same navigation bar.

However, when searching alumni or students the faculty member will be allowed to

make changes to their profiles including changing a graduating student’s privileges to

that of alumni, or edit any other parts of a profile necessary. The dashboard for faculty

members will also provide them with the option to view student profile progress or

overall department progress. If the user goes to their profile page, they will be able to

logout or modify their profile (username, password, etc.).

4.2.4 Database Handler Module

The database handler module will be implemented in order to easily handle reading and

writing to the database our system will run off of. The primary purpose of this handler is

to keep all database operations in one place, so if the database is ever worked on or

modified, the changes will only be seen in one module. In order to achieve this purpose,

the module will have the following responsibilities:

● Adding and removing information to the database

● Modifying information inside of the database

15

● Reading information from the database

These three responsibilities, while basic, will allow the rest of the modules to be sent

information stored in the database, as well as send requests to change the database

without having to worry about each module connecting directly to the database.

Figure 4.2.4.1

As can be seen in Figure 4.2.4.1, the three responsibilities are then broken down into

pieces of two different submodules within the database handler. These submodules are

the Program Functions, which will include the public functions the other modules will

have access to. The other module is the Database Functions, which will be internally

accessible to the database handler, with the only other connection to the module being

the database itself.

The Program Functions will primarily focus on the two different entities we will be

tracking in the database: students and milestones. For each of these, the functions

accessible to the other modules are to add, remove, update, and read a row of

information from the table. Each of these will be directly related to a private function in

the Database Functions submodule, as both students and milestones will use similar

functions to one another. In this regard, the Program Functions will invoke the

Database Functions to actually connect with the database.

16

The Database Functions will consist of an AddRow, RemoveRow, UpdateRow, and

ReadRow. The AddRow function will return a boolean value, with True being success,

and False meaning the row was unable to be added. The RemoveRow function will

return the row being removed stored in a custom data structure based on the entity

being removed. The UpdateRow function will update a row, and return a boolean once

again to show the success of the operation. Finally, the ReadRow function will return the

row being requested in a data structure based on the entity being read.

Figure 4.2.4.2

Figure 4.2.4.2 illustrates the different entities we expect to handle within our database.

These are the pieces that will hold the information we expect to use for our statistical

analysis, as well as the student profile page displays. The user will be the primary entity

everything else is centered around, as this is a tool based around user information. In

the future, we do expect that companies themselves can be added as entities to allow for

better filtering tools, but for now, companies will remain in the milestone information

that they apply to.

17

5. Testing

For this project, we have implemented integration and unit tests, and currently

implementing usability testing. Unit testing would test every part of our code to check

whether its behavior meets expectations and that no unforeseen problems have

occurred. Our integration testing examines how the individual components of the

project work together to produce the required functionality. In our example, this applies

to how LinkedIn data is passed through the HTML file to the database. Usability testing

evaluates the user-friendliness of our applications by asking people who are not familiar

with our projects to browse our website and complete various tasks. This exposes any

problems with the user interface and other website components. Usability testing is very

important to our project because it ultimately simulates how our end user will interact

with our product. Considering the importance of this point, our test plan focuses more

on usability testing.

5.1 Unit Testing

Unit testing is done to ensure that the components and modules of the application are

working properly and returning the desired functionality. Making sure that each

component functions correctly on its own is essential when it comes to combining each

unit together in order to have an application that works as needed. By performing

specific unit tests to different functions and operational procedures, any issues can be

resolved before the application moves forward, thus providing a cleaner system. For our

application, we plan on testing the individual functions and procedures belonging to

each of the different main modules of our application to make sure they work as they are

intended to. By doing this we will be able to gain a clear understanding of the behavior

of the individual units that make up our application and fix issues that arise ranging

from inappropriate handling of different types of input to problems that could crash the

application. For this project, the individual modules that will be tested are the sign-in

module, user search module, user profile module, dashboard module, and our database.

Each of these modules must work as they should by themselves before they can work

together to form the overall functionality of the application as a whole.

5.1.1 User Searching

In our application, this component is meant to allow a user to look up others who are

pursuing degrees in the same or related fields. Entering the name or email of a person

should provide a list of those who are registered users and allow the individual making

the search to view their profile. The person making this search should not have the

privilege to change or modify that user's profile but rather only view what is contained

on it. To test this unit, we first plan on providing the search form with random inputs

including characters such as ‘?’, ‘/’, ‘..’, etc. and different phrases. Also, because this

18

module needs to access the database, we need to provide different inputs that may allow

a user to access parts of the database that they should not be able to. More specifically,

this would be done by manipulating the SQL queries that parse through this database

with different inputs such as “admin’--”, or “‘OR 1=1’--” which if not handled correctly

could give the user admin privileges to the system or trick the query into retrieving all

information because ‘1=1’ results to true and the query would no longer treat the rest of

itself after because ‘--’ is a comment indicator. It is little things like these that could

breach the confidentiality, integrity, and even the availability of our system.

5.1.2 User Profile

The user profile module of our application is meant to provide the user with a detailed

representation of their goals and milestones. Here the user should be able to

add/modify things on their profile to keep it updated and store personal information as

well as information that will be viewable to other people when they use the search

module. Our plan for testing this unit will include setting visibility permissions and

making sure others who search for that user cannot see the elements set to private and

only can see those set as public. In addition, we will be implementing testing to make

sure invalid input(s) does not get added as a milestone to a user's profile. We will also be

testing to make sure that every milestone an individual has on their profile is displayed

as well. In order to do this we will be providing bad random input such as words

composed of a random sequence of special characters, i.e. “?//[{@&”, etc. We will also

create users with several milestones to ensure that parsing through a user's milestones

collects each one. We also will need to test and make sure if a user has 2 of the same

milestones that they are not repeated on their profile. Overall, our unit testing for the

users profile will consist of creating different test users, where some of these users have

multiple milestones, and where some try to input invalid data to add to their profile. By

doing this we will be able to guarantee that a users page cannot have data that does not

make sense and also that whatever information they want to display is displayed to

others and sensitive information is only viewable by that user.

5.1.3 User Login/Register

Within the user interface module, we must test that users can register and log in. As a

user comes to the home screen, they will be prompted to Log In using the top button.

Once they are here, they will have the option of continuing with logging in or registering.

We will need to ensure that when the user is logging in, the email field will check to be

an email. If something else is passed in, we have to reject the attempt at signing in

before it ever involves our database lookup. The password, however, can be any string,

so that will not be checked for any format. The other primary testing for the login, at

least, is to ensure it finds an account that exists, and this can be tested by passing in

known emails and unknown emails and seeing the known ones give different results.

19

From the login page, there will be an option to register. This page is similar looking to

the login page, except that it is much more important for testing. While the login page is

basic in its testable pieces, the registration page must test the information that is put in

to ensure our database remains consistent. This includes checking that an email is put

in, which can be tested by sending in strings lacking the ending for an email string. The

next step is to ensure that the password field is being matched to a repeat field for it, as

we will not be displaying the password on the screen. This allows the user to ensure they

are not mistyping the password and lets us confirm that is actually what they want the

password to be. Considering the rest of the options are selections rather than raw string

inputs, the rest of the fields do not need to be tested for any kind of format. If the email

and password are not tested, though, our database could end up with all kinds of

inconsistencies.

5.1.4 User Dashboard

Student users, once logged in, will have a home screen (dashboard displayed) which will

contain a navigation bar. The bar should have options such as “Dashboard” to return the

user back to the home page, “Portfolio” that will take them to their own profile page, and

a search bar to look up other students' public profiles. Going back to Dashboard, once

the users click the button ’Dashboard’, the dashboard will allow the student to view their

own goals and progression toward them as well as being able to report an issue to

administrators. Furthermore, he is able to search other alumni profiles as well as report

a data problem to administrators through the buttons on the page. Except for the

student users, faculty will be the most different as these users will have the highest level

of privileges on the system. Upon login, a faculty user will also have the same navigation

bar. However, when searching alumni or students the faculty member will be allowed to

make changes to their profiles including changing a graduating student’s privileges to

that of alumni, or edit any other parts of a profile necessary. The dashboard for faculty

members will also provide them with the option to view student profile progress or

overall department progress. If the user goes to their profile page, they will be able to

logout or modify their profile (username, password, etc.).

5.1.5 LinkedIn Data Handler

The LinkedIn data handler module will be a core module to the system, as it is what is

providing the data for the rest of the system to use. This data will typically be scraped

from student LinkedIn profiles, and when involving web scraping, there is a chance of

running into errors. For this reason, the LinkedIn data handler must be tested at each of

its basic functions to ensure everything remains consistent. This ultimately means that

first, the URL that is passed in as the user page must be checked to ensure that it is a

user profile, and not some other site. From there, it must pull the career experience data

from LinkedIn and ensure that the data is actually present before continuing. Otherwise,

20

the system may try processing null data due to an error in the scraping, whether it be

due to a bad URL given or a lack of experience. Finally, the system must test that the

data that has been pulled can be classified into our database categories, Company and

Milestone Type. Once all of this has been checked, the system will then be allowed to

insert the data into our database. This will help keep inconsistent scraping from causing

errors and inconsistencies, as well as ensure the LinkedIn module is working properly.

With all of the pieces of our unit testing laid out, we feel that we have a good plan for

handling each part of our program. These tests will only ensure that the individual

modules are working properly on their own, however. In order to ensure the modules

work well with one another, we move on to talk about integration testing.

5.2 Integration Testing

Integration testing is connecting all the components together to make one system that

works together. Once the components are connected together, tests can be made to

check if they are acting together as expected. The main focus of the integration testing is

to check the communications between the user’s inputs from the frontend, backend, and

database. These tests will be able to show the interactions between each module as well

as show our expected results from each test.

5.2.1 Account Login

Users on this website will be able to create their own accounts in the system. Once an

account is created the user will be able to login with an email address and password that

will be kept in the database. This part of the system is able to keep track of who is logged

in as well as all the information the user enters while logged in. Overall, the registration

of a user is the starting point into the rest of the system and connections between the

rest of the modules.

Integrati

on Test

Description Expected Result

User

Registratio

n

A user can register

an account

- A user will be able to enter all information

needed to create an account

- A user’s information is then added and entered

into the database and will be able to login with

Email and Password

21

User Login A user can login to

their account that

that registered

- A user can login with their Email and Password

- A session will be created where the browser

keeps track of who is logged in

- A user then has their own profile page they can

add personal information to

User

Logout

A user can logout of

their profile

- A user can logout of their profile they logged

into and will have to sign in again to access their

account

- The session created in the browser for the user

will end after signing out

5.2.2 Dashboard

Both registered and non-registered users are able to access the dashboard module of the

website. Anyone is able to choose the fields that are incorporated into creating the

graphs. These graphs will display information from the database that is requested by a

user. Expected results are that the information from the database will be displayed

correctly in the graph requested.

Integratio

n Test

Description Expected Result

Pie Chart

Display

A user can request

a Pie Chart

- The information requested will be taken from the

Database and displayed as a Pie Chart

Bar Graph

Display

A user can request

a Bar Graph

- The information requested will be taken from the

Database and displayed as a Bar Graph

22

Pyramid

Chart

Display

A user can request

a Pyramid Chart

- The information requested will be taken from the

Database and displayed as a Pyramid Chart

5.2.3 Profiles

Inside each user’s profile, a user will be able to add, edit and delete a milestone. A

milestone is entered by adding what type of job it is as well as the name of the company.

The milestone will then be put into the database after the user has entered all the

information and hit submit. The expectation of our system is to correctly input each

individual user’s milestones. Another expectation is also to correctly display each user’s

milestones on their profile page. The communication between the modules and the

database is extremely important and is expected to work smoothly throughout the

system.

Integration

Test

Description Expected Result

Student User

Adds a Milestone

to their Profile

Page

A student can add a new

milestone to their experiences

in their profile page

- New milestone is added to the

user’s profile page

- The correct milestone is

retrieved from the database and

is viewable by the user

Student User

Edits a Milestone

in their Profile

Page

A student can edit an existing

milestone in their experiences

in their profile page

- Existing milestone is updated in

the database with the new

information the user has entered

in each field

- New information is then

updated on their profile page for

the user to see

23

Student User

Deletes a

Milestone in

their Profile Page

A student can delete an

existing milestone in their

experiences on their profile

page

- Existing milestone is deleted in

the database

- The deleted milestone is no

longer visible on the user page

because it no longer exists in the

database

Student User

Changes the

Visibility of their

Profile Page

A student can change the

visibility of their own profile

from PUBLIC to PRIVATE and

vice versa

- The visibility is changed in the

database after a button is clicked

- The current visibility of the

user’s profile will be seen from

their page

5.2.4 Search

The search module is able to search the entire database for a keyword that displays any

public profiles and displays their pages in a table. The expected response is that private

profiles are not visible and that only public profiles are displayed. A user is then able to

view any public information that a user has allowed to be public on their own page.

Overall, the search module has to communicate with the database to correctly display

information that has been allowed to be viewed publicly.

Integratio

n Test

Description Expected Result

User Search

for Profiles

A user is able to

search for other

profiles

- A list of PUBLIC profiles will appear in the

table that matches the searched criteria

- All PRIVATE profiles will not be shown to

Student Users

24

5.2.5 LinkedIn

The LinkedIn module is able to search a user’s LinkedIn profile and populate our

database with some data from the LinkedIn profile. Once this has been done, the

milestones need to be checked for consistency of data to ensure our database module

can handle inserting the data.

Integration

Test

Description Expected Result

Insert Pulled

Data into

Database

A piece of data can be formatted

correctly to be inserted into the

database

- A new milestone will be seen

on the user profile when

scraped

- The milestone will fit into one

of the four type categories

5.3 Usability Testing

Through usability testing, we can understand how actual users will interact with our web

application and what obstacles we may encounter that we did not account for. Usability

testing is done by recruiting volunteers who do not know anything about our website

work and asking them to browse our website to perform specific tasks without following

the guidance of the user manual we provide. Due to our team do not find any volunteers

right now, our client, Dr. Wang, is going to be the volunteer and help us finish the

usability testing.

We are going to use Zoom to perform our usability testing, and the testing will be

recorded so that we could return and watch it again when needed, however, all members

will present and take notes during the meeting. Before arranging the meeting, the user

manuals will be sent to Dr. Wang, so that he has time to view and understand the actor

he will play. The team leader will explain the process at the beginning of the meeting,

and then all team members will mute their audio so that we do not interfere with the

testing process and can better understand the first-time user’s application experience.

From the usability testing, we will be able to gather important feedback to make our

website more intuitive for new users. Taking this user input into account, we can see

flaws and bugs that have never been seen before, so we can improve our product as a

whole.

25

6. Project Timeline

Our basic overall project timeline started back in August of 2020, when we were

introduced to our project and the client. Over the next couple of months we had weekly

meetings to establish the project requirements with our client and fully understand their

wants/needs. Once we knew more about the project we began to research how to

develop our web application. After researching we began to develop a plan in order to

create efficient solutions for our clients problems. We executed this plan by deciding on

the best technologies to handle the needs of our requirements and designing our

program architecture. Once these blueprints were created and we had a good proof of

concept we began implementation. We had several issues come up during this phase

that hindered our progress but we found ways to work around them and offered

alternative solutions to the problem. The next step after completing our minimum viable

product demo was to test and get feedback then improve the software accordingly.

Finally, we presented our finished product to our client and they approved of what we

had created. Although they were happy with the result there are still some minor things

still left to do such as transferring server admin privileges but these things will be

handled immediately. The main phases of our project is shown in the figure below

Figure 6.1

26

7. Future Work

If a 2.0 version of our web application were to be created, we really think that adding

additional modules would be an excellent feature. Since time was limited and we had to

build our web application from scratch, we were only able to create 2 modules. If

another team worked on this project in the years to come, they would not only be

provided with an already set up database and web application, but they would also have

a template to how everything should look. This would allow them to add on to the

project right away, rather than worry about how to integrate everything and make it

functional because all of that stuff would be done already. Adding more modules can

also allow students to work on even more topics that are discussed in class, which could

increase their proficiency rate.

Moreover, we plan to expand our application to all departments of NAU. Although the

task may seem difficult, once done it will greatly improve NAU students' chances of

employment. Our members would like to see everyone who uses our application get the

job offers they want.

27

8. Conclusion

The main problem that we face is being able to account for the highlights of students’

careers. When a student gets an internship or a job, NAU wants to highlight that fact

and encourage every student to pursue anything that will help them get a job in the

future. Our client, Dr. Wang, wants to set a goal for NAU Engineering students that one

hundred percent of students will have had at least one internship or experience in the

degree they’re pursuing by 2025.

Currently, NAU has no way of tracking students’ progress, we don't know who has had

internships, or if any student is even benefitting from their learning. Our team aims to

give students a place where they can store the milestones of their time here at NAU.

NAU currently has exit surveys in place that ask students if they have gotten a job offer

since graduation. There are a couple of problems with this, one being is that students

might not have had a job offer one to two months after graduating. Another problem

with this is that students might not always fill out the survey.

Our web application that we have made will make these processes a lot easier. Instead of

exit surveys, NAU will have a place to see exactly what their students have achieved, and

how it has affected their career for the future. This will both save time in not having to

worry about every student filling out an exit survey as well as already answer some

questions that students might not be able to answer in a survey. Our client could

potentially put this into place for all colleges of NAU. NAU would then be able to show

how many students have gotten jobs out of college. The future of this web application

that our team has made could have endless possibilities for our client and how he plans

to use it.

Our team has had a lot of fun working on this project together and we are excited to see

it come to its last couple phases of development. We hope to see some improvement for

this website in the future and are excited to see how our client will use it once it’s in

production. Lastly, we as a team have learned so much through this capstone class. We

have all learned how to work as a team as well as fulfill a client’s needs. We have been

able to grasp some of what goes on in the real world as well as understanding how a

software development process takes place. Capstone was easily the most realistic class

here at Northern Arizona University.

28

Appendix A

Hardware

The two main programmers on our team developed on different systems but both coded

in the same IDE. Both programmers used Visual Studio Code as a work environment for

our web application. One programmer uses a Macbook Pro with a 3.5 GHz Dual-Core

Intel Core i7 processor with 16 GB of memory. The other main programmer works on a

desktop with a 3.6 GHz Quad-Core Intel i7 processor with 32 GB of memory. There is no

need for a high powered machine to be able to run a web application or be able to

program one either. Any basic computer should be able to run everything we use in this

project.

Toolchain

Our team used Visual Studio Code for our work environment. VS Code makes it easy to

run applications as well as see the folders you are working in. VS Code also has lots of

plugins you can add to make programming in some languages easier. Inside our project

we used Node.js for our backend. We installed some plugins to make running our

program and finding files easier such as Express, Cors, dotenv, msSql and puppeteer.

Express is a simple web framework that is easy to use and provides a lot of features to

use in a web application. Cors is a node.js package that runs as a connection middleware

for our project. Dotenv is a tool that allows us to put connection names and passwords

in a separate file that then is easily accessible by our project. MSSQL allows us to

connect to an SQL server through our backend. Finally, puppeteer is what we use to

scrape LinkedIn to grab raw HTML that we then parse through to get the information

we need from the user’s profile. Puppeteer is the primary tool for our application’s

scraping function. These tools run together to allow our project to run smoothly and

efficiently.

Puppeteer Scraping:

The puppeteer Node.js module is an important tool to understand. Ultimately, it will

open a web browser in the backend and navigate different pages, and return the HTML

of the page it navigates to. With this, if you want to expand it to scrape from other pieces

of a LinkedIn profile, you can look at the HTML of the page that is scraped and parse it

in a similar fashion to our LinkedIn scraping tools. A simple way to do this with the code

already provided is to log the HTML that is returned before we parse through it, and

find the section you want to read from and parse that out as well.

Setup

Running the web application on a local machine:

Step 1: Open up VS Code and open your project folder

29

Step 2: Install all the plugins for Node.js (Express, MySQL, Cors, dotenv,

puppeteer) using npm install

Step 3: Make sure the connections to the LinkedIn account and MySQL server are

proper connections

Step 4: Run the command “npm start app.js” where app.js has the startup for the

backend server

Step 5: Open up your files to see how your website acts

Running the web application through the NAU servers:

Step 1: SSH into webapps.ac.nau.edu using your NAU credentials

This uses the command: ssh <nau_id>@webapps.ac.nau.edu

Step 2: SSH into the egrcn instance at the localhost

This uses the command: ssh egrcn@localhost

Step 3: Inside of the Server directory, find the server container name

This uses the command: podman ps -a

Step 4: Start and stop the container to start and stop the site

This uses the command: podman start <container-name> OR

podman stop <container-name>

The server should now be up at https://ac.nau.edu/egrcn/

Production Cycle

When making changes to the code and wanting to deploy the changes, there is a simple

process to follow within the server after you have SSH’d into the egrcn instance as seen

in the Setup section above.

Once the code changes have been made, the files must first be moved to the server. You

can make changes within the server using command line editors, but this is only useful

for quick fixes. To start moving the files from the local machine to the server, you must

first SCP the files into the server. They you must SSH into the webapps server, and SCP

the files into the egrcn instance once there. This can be done using the following string

of commands:

scp -r /directory/to/send <nau_id>@webapps.ac.nau.edu:DirectoryName

30

ssh <nau_id>@webapps.ac.nau.edu

scp -r DirectoryName egrcn@localhost:DirectoryName

ssh egrcn@localhost

Now the files will be in the server from the local machine. From here, you will use the

Dockerfile that is already made to build the Docker container. While in the server

directory, you will build the server container image. Then, once the image is built, you

will build the container and run it. This is done in two commands, and they are:

podman build -t <image_name> .

podman run -d --name <container_name> -p 9007:9007 <image_name>

Using these two commands will start the server up with the files you had run.

It is important to note that only one container can and should be running at a time, as

this is what is handling requests to the web server at the app domain. Therefore, it is

important to check if any containers are running before running the new one. A list of all

containers can be found using:

podman ps -a

Some useful container commands are listed here:

podman rm <container_name> = removes a container

podman rmi <image_name> = removes an image

podman start <container_name> = starts a container

podman stop <container_name> = stops a container

31

